Internationales Verbundprojekt -AReLiS-3- startet am MEET Batterieforschungszentrum der Universität Münster

Das Forschungsteam wird die elektrochemischen Prozesse innerhalb der Zellen mittels komplementärer analytischer Methoden weiter entschlüsseln. Ergänzend zu den schwefelbasierten Kathoden untersuchen die Wissenschaftlerinnen und Wissenschaftler konventionelle Kathoden auf Nickel-Mangan-Kobalt-Basis und vergleichen sie miteinander. -Um einen weiteren Schritt in Richtung Anwendung zu gehen, werden wir die vielversprechendsten Lithium-Schwefel-Konzepte unter industrienahen Aspekten hochskalieren sowie in Pouch-Zellen zyklisieren, also mehrfach laden und entladen, und untersuchen-, erklärt Projektmanager Dr. Simon Wiemers-Meyer, stellvertretender Leiter des Forschungsbereichs -Analytik & Umwelt- am MEET Batterieforschungszentrum.
Zum Hintergrund: Viele bisherige Lithium-Schwefel-Konzepte kämpfen mit dem Alterungsphänomen, dass sich im Elektrolyten lösliche Polysulfide an der Kathode bilden. Das verursacht eine irreversible Ablagerung von Schwefelspezies an der Anode. Die Folge: Bereits nach wenigen Ladeund Entladezyklen kann die Kapazität der Lithium-Schwefel-Batterien auf ein niedriges Niveau sinken. Ein Ansatz, dem entgegenzuwirken, ist die Verwendung fester Elektrolyte. In den Vorgängerprojekten -AReLiS-1 und -2- haben sich die Wissenschaftler deshalb mit den Reaktionen der Kathoden in flüssigen, festen und hybriden Elektrolyten beschäftigt. Enormes Potenzial für langzeitstabile Lithium-Schwefel-Batterien liegt etwa in der Verwendung reiner Polymer-, Festund Hybridelektrolyte. Diese Elektrolyte reduzieren nicht nur die Polysulfid-Migration, sondern können auch dazu beitragen, die Aktivmaterialien verstärkt auszunutzen. Auf Basis der tieferen Einblicke in die chemischen Prozesse entwickelte das Team neue Materialien für Lithium-Schwefel-Konzepte sowie neue Methoden für deren Analyse.
In dem Projekt arbeiten das Team des MEET gemeinsam mit Wissenschaftlern des Helmholtz Instituts Münster des Forschungszentrums Jülich, der Technischen Universität Dresden, dem Fraunhofer-Institut für Werkstoffund Strahltechnik (Fraunhofer IWS) Dresden, der Waseda Universität (Japan), dem National Institute of Advanced Industrial Science and Technology (Japan), der Tohoku Universität (Japan) sowie der Kyushu Universität (Japan). Die Projektlaufzeit ist von November 2023 bis März 2026.