Scientists decode black widow spider venom

- EN - DE
Scientists decode black widow spider venom
Thanks to these results, researchers now better understand how α-latrotoxin works. "The toxin mimics the function of the calcium channels of the presynaptic membrane in a highly complex way," explains Christos Gatsogiannis. "It therefore differs in every respect from all previously known toxins." The new findings open up a wide range of potential applications; latrotoxins have considerable biotechnological potential, including the development of improved antidotes, treatments for paralysis and new biopesticides.

The research results have just been published in the journal Nature Communications. In previous work, the research group led by Christos Gatsogiannis had already deciphered the structure of insect-specific latrotoxins in the venom of the black widow spider before inserting into the membrane.


The project was funded in part by the German Research Foundation (DFG) through the Collaborative Research Centre 1348 "Dynamic Cellular Interfaces".

Original publication:

BU Klink, A Alavizargar, KK Subramaniam, M Chen, A Heuer, C Gatsogiannis (2024): Structural basis of α-latrotoxin transition to a cation selective pore. Nature Communications 15, 8551; DOI: 10.1038/s41467’024 -52635-5