"To our surprise, despite the very different approaches, we found the same abundance of nucleon pairs as our colleagues had previously found at low energies," says TomᨠJe¸o. "Furthermore, we were able to show for the first time that quarks and gluons behave differently in these pairs than in free nucleons and also differently than previously expected in atomic nuclei. This has a decisive influence on our understanding of nuclear binding." The study also shows that the abundance of pairs increases with nuclear mass and that proton-neutron pairs are particularly common.
For the study, the research team extended the "parton model of quantum chromodynamics", which mathematically describes the interactions in atomic nuclei, by integrating individual nucleons and pairs of correlated nucleons into the analyses for the first time. The results have been published in the journal Physical Review Letters.