Forscher entschlüsseln Wirkungsweise kardiologischer Medikamente

Guiscard Seebohm - hier mit einem 3D-Modell des Ionenkanals Kv7.1/KCNE1 - ist de

Guiscard Seebohm - hier mit einem 3D-Modell des Ionenkanals Kv7.1/KCNE1 - ist der Letztautor der neuen Studie (Foto: WWU/M. Heine)

Ein Molekül als Keil im Kanal: Forschungsgruppe entschlüsselt Wirkungsweise kardiologischer Medikamentenkandidaten



Münster (mfm/sw) - Viele nehmen sie, doch kaum jemand weiß, wie sie wirken - und was sie im Körper auslösen. Die Rede ist von Medikamenten gegen Herzerkrankungen. Deren ,,Hebel" sind meist die Ionenkanäle, denn über die steuert der menschliche Organismus die Zahl und Länge der Herzschläge, aber auch die Schlagkraft. Ist die Funktion der Kanäle beeinträchtigt, kann es neben anderen Erkrankungen auch zu Problemen am Herzen kommen. Um möglichst präzise herzwirksame Medikamente zu entwickeln, bedarf es genauer Kenntnisse über die Wirkweise auf molekularer Ebene - weshalb Prof. Guiscard Seebohm von der Westfälischen Wilhelms-Universität (WWU) Münster schon seit Jahren auf diesem Gebiet forscht. Mit seiner internationalen Arbeitsgruppe hat er nun im Fachmagazin Communications Biology einen möglichen Therapieansatz für Ionenkanalerkrankungen beschrieben. Dieser basiert auf einer gezielten Korrektur der zugrundeliegenden Ionenkanalfehlfunktion.

Ionenkanäle, die nicht so ,,arbeiten", wie von der Natur vorgesehen, verursachen laut Seebohm eine ganze Reihe von potenziell tödlichen Erkrankungen. ,,Da verwundert es nicht, dass etwa die Hälfte aller Medikamente direkt oder indirekt über die Ionenkanäle wirksam sind", erläutert der Leiter der Abteilung für Zelluläre Elektrophysiologie und Molekularbiologie am Institut für Genetik von Herzerkrankungen. Die Kanäle kontrollieren zum Beispiel den Fluss von Natriumund Calciumionen ins Zellinnere und den Austritt von Kaliumionen aus Herzmuskelzellen. Diese Ionenverschiebungen erzeugen, vereinfacht gesagt, eine Differenz zwischen dem ,,Drinnen" und dem ,,Draußen" und ermöglichen es dem Herzen, seine Pumparbeit auszuführen. Viele herzwirksame Medikamente ,,funktionieren" dadurch, dass sie direkt an diese Ionenkanäle andocken und dadurch deren räumliche Form und somit ihre Funktion beeinflussen.

Bei der Entwicklung von derartigen Ionenkanal-wirksamen Medikamenten ergibt allerdings ein großes Problem: Zwar lässt sich die Funktionsveränderung des Ionenkanals durch das Molekül nachweisen, doch sind die dafür verantwortlichen Mechanismen bislang nur sehr eingeschränkt vorhersagbar. ,,Ein detailliertes Verständnis auf atomarer Ebene würde nicht nur die gezieltere Entwicklung wirksamer Medikamente ermöglichen", so Seebohm. ,,Es könnte zugleich dabei helfen, unerwünschte Nebenwirkungen frühzeitig zu erkennen und zu vermeiden."

Im Zentrum der Forschungen seiner Arbeitsgruppe steht ein Molekül aus der Gruppe der Benzodiazepine, das sich an den Kaliumionenkanal Kv7.1/KCNE1 bindet und dessen Funktion erhöht. Fachleute sprechen von einem Aktivator. ,,Der Nutzen des von uns untersuchten Moleküls lässt sich mit einem Bild veranschaulichen: Es hält die Kanäle offen - ähnlich einem Keil, der verhindert, das eine geöffnete Tür wieder zufällt", so Prof. Seebohm. Eine solche Substanz, die einen Kanal stimuliert, könnte sich als Medikament gegen Herzrhythmusstörungen eignen. Allerdings, so Dr. Julian Schreiber, Erstautor der jetzt publizierten Studie: ,,Derartige Medikamente bergen immer auch die Gefahr, selbst Herzrhythmusstörungen zu fördern - daher ist es wichtig, ganz genau zu verstehen, wie der Medikamentenkandidat seine Wirkung auf den Ionenkanal erzielt. Unsere Arbeit hilft, Nebenwirkungen zu reduzieren".

Die Gruppe um Seebohm griff neben molekularbiologischen Methoden auf komplexe Computersimulationen zurück. ,,Unsere Ergebnisse erweitern das molekulare Verständnis und liefern eine solide Basis für die computergestützte Medikamentenentwicklung", resümiert Seebohm. Kooperiert hat der Molekularbiologe mit Forscherinnen und Forschern der WWU-Graduiertenschule Chembion, aus Düsseldorf und den USA.

This site uses cookies and analysis tools to improve the usability of the site. More information. |