Einem internationalen Wissenschaftsteam ist es gelungen, ein Merkmal topologischer Materialien experimentell zu bestätigen. Beteiligt waren die Uni Würzburg und die Uni Dresden mit ihrem Exzellenzcluster ct.qmat.
Sie gelten als Hoffnungsträger für energiesparende Elektronik und die Hightech der Zukunft: Topologische Quantenmaterialien. Eine ihrer Eigenschaften ist die Leitung von spinpolarisierten Elektronen auf ihrer Oberfläche - und das, obwohl sie in ihrem Inneren eigentlich nichtleitend sind. Zur Einordnung: Bei spinpolarisierten Elektronen ist der Eigendrehimpuls, also der Drehsinn der Teilchen (Spin), nicht rein zufällig ausgerichtet.
Um topologische Materialien von herkömmlichen zu unterscheiden, untersuchte man bisher ihre Oberflächenströme. Die Topologie der Elektronen ist jedoch eng mit ihren quantenmechanischen Welleneigenschaften und ihrem Drehsinn verknüpft. Diesen hat man nun direkt mittels photoelektrischem Effekt nachgewiesen. Dabei werden Elektronen mithilfe von Licht zum Beispiel aus einem Metall gelöst.
Per ,,3D-Brille" Topologie der Elektronen sichtbar machen
,,Weil sich Elektronen und Photonen quantenmechanisch sowohl als Welle als auch als Teilchen beschreiben lassen, können Elektronen einen Drehsinn besitzen - und der kann dank des photoelektrischen Effekts gemessen werden", erläutert Prof. Giorgio Sangiovanni, Gründungsmitglied von ct.qmat am Standort Würzburg, der zu den theoretischen Physikerinnen und Physikern im Projekt gehört. ,,Dafür haben wir zirkular polarisiertes Röntgenlicht verwendet - also Lichtteilchen, die einen Drehmoment besitzen. Wenn ein rechtsdrehendes Photon auf ein Elektron mit linkem Drehsinn trifft, so löschen sich ihre Drehsinne gegenseitig aus. Das Elektron wird nicht freigesetzt. Anders verhält es sich, wenn Elektron und Photon den gleichen Drehsinn aufweisen. Das Signal für linksund rechtspolarisierte bzw. -ausgerichtete Strahlung ist bei Elektronen mit starkem Drehsinn unterschiedlich. Daher kann man sich dieses Experiment vorstellen wie eine Polarisationsbrille im 3D-Kino - auch hier werden unterschiedlich ausgerichtete Strahlen eingesetzt. Unsere ,3D-Brille’ macht die Topologie der Elektronen sichtbar."Unter Federführung des Würzburg-Dresdner Exzellenzclusters ,,ct.qmat - Komplexität und Topologie in Quantenmaterialien" sei es erstmals gelungen, ein solches Experiment samt theoretischer Beschreibung zu verwirklichen sowie Quantenmaterialien topologisch zu charakterisieren, so Sangiovanni. Dabei kam ein Teilchenbeschleuniger zum Einsatz. ,,Den Synchrotron-Teilchenbeschleuniger benötigen wir, um dieses spezielle Röntgenlicht zu erzeugen und den 3D-Kinoeffekt zu erzielen."