Der antivirale Wirkstoffkandidat Molnupiravir (gelb) wird in die virale RNA eingebaut und führt dort zu Mutationen (violett), welche letztendlich die Vermehrung des Viruses verhindern. (Bild: Florian Kabinger, Christian Dienemann, Patrick Cramer / Max-Planck-Institut für biophysikalische Chemie)
Der antivirale Wirkstoffkandidat Molnupiravir ( gelb ) wird in die virale RNA eingebaut und führt dort zu Mutationen ( violett ), welche letztendlich die Vermehrung des Viruses verhindern. (Bild: Florian Kabinger, Christian Dienemann, Patrick Cramer / Max-Planck-Institut für biophysikalische Chemie) - Forschungsteams aus Würzburg und Göttingen haben den Wirkmechanismus des Medikaments Molnupiravir enschlüsselt und zeigen, warum es eine hohe Wirksamkeit gegen SARS-CoV-2 verspricht. Die USA sicherten sich kürzlich 1,7 Millionen Dosen eines Wirkstoffs, der Covid-19-Patientinnen und Patienten helfen könnte. Molnupiravir bremste in vorläufigen Studien das Coronavirus SARS-Cov-2 bei seiner Vermehrung aus. Forschende am Göttinger Max-Planck-Institut (MPI) für biophysikalische Chemie und der Julius-Maximilians-Universität (JMU) Würzburg haben jetzt den zugrundeliegenden molekularen Mechanismus aufgeklärt. Wie sie zeigen konnten, schleust der Wirkstoff RNA-ähnliche Bausteine in das Erbgut des Virus ein. Wird das Erbgut weiter vermehrt, entstehen fehlerhafte RNA-Kopien.
TO READ THIS ARTICLE, CREATE YOUR ACCOUNT
And extend your reading, free of charge and with no commitment.