
Neurotoxins are probably known to many non-specialists - in the form of botox, which is often used in cosmetic surgery. The Black Widow’s poison, however, has anything but a "beautifying" effect: LaTX was developed by nature primarily in order to immobilise insects - or simply kill them straight off. In the process, the toxins dock onto specific receptors on the surface of nerve cells and cause neurotransmitters to be released, for example through a calcium channel. As a result of the constant inflow of calcium ions into the cell, transmitters are given off which lead to seizures.
This mechanism is what distinguishes the latrotoxins from all other variants of the so-called pore-forming toxins. "Despite wide-ranging studies carried out over many years, we didn’t know the structure of these toxins," says Gatsogiannis. "For this reason weren’t able to understand the precise active mechanism." Help was provided in the form of cryo-electron microscopy, or cryo-EM for short. By means of this three-dimensional method, biomolecules can now be "photographed" down to atomic resolution. In the process, the protein complexes in liquid ethane are frozen at minus 196 degrees, in milliseconds, into a thin layer of amorphous ice, a form of solid water. Hundreds and thousands of images are then captured which show different views of the proteins and, in this way, enable the structure of the neurotoxin to be recognised.
Using cryo-EM, and in collaboration with researchers at the Max Planck Institute in Dortmund and at Jacobs University Bremen, the team of Münster researchers succeeded in explaining the first structure of a latrotoxin. "The general structure of LaTX is unique and is different in every possible way from all other known toxins," says Gatsogiannis. The new insights are fundamental for understanding the molecular mechanism of the LaTX family, and they pave the way for possible medical applications - as well as for the development of an efficient antidote. In addition, these insights into insect-specific toxins might open up new opportunities for pesticides. For future research, however, it is essential to understand how exactly the toxin is inserted into the membrane, i.e. into the surface of the cell. "At the moment we are studying the structure of all members of the latrotoxin family - in particular how they exactly recognise the specific receptors on the surface of the cell, and how these sensors function," Gatsogiannis explains.
The biggest obstacle to these plans is the fact that cryo-EM is not yet available in the Münster area. Prof. Gatsogiannis and his team want to change this: "The practical importance for medical research is immense," says Dr. Minghao Chen, the lead author of the study now published, "as ’function’ is directly linked to ’structure’ in a biological context. But the method is highly complex and requires an ultramodern infrastructure." The research team plans to introduce this innovative method soon in Münster University’s new research building, the Center for Soft Nanoscience (SoN).
Original publication
Chen, M., Blum, D., Engelhard, L. et al. Molecular architecture of black widow spider neurotoxins. Nat Commun 12, 6956 (2021). DOI: 10.1038/s41467-021-26562-8