
"Our modern electronic technologies are fast approaching their limit, from a physics point of view," says Wolfram Pernice. "We need completely new methods for processing the enormous data volumes which are necessary for AI applications."
In the project, the PHOENICS consortium plans to use new types of materials to create the photonic neuromorphic processors. Another aim is to develop new methods of significantly increasing computing power.
The project is based on previous work done by Wolfram Pernice’s group. A few weeks ago, for example, the team published a study in "Nature" in which it presented a hardware accelerator for so-called matrix multiplications. These multipliers handle the main processing load within neuromorphic networks. The researchers had combined the photonic structures with phase change materials (PCMs) to create very fast and energy-efficient photonic processors. PCMs are normally used in optical data storage with DVDs or Blu-Ray discs. In the processor which the team described, this enables the matrix elements to be stored and preserved without any energy input being needed. The light source which the physicists used was a chip-based frequency comb. Such a light source provides different optical wavelengths which, independently of one another, are processed in the same system. This enables parallel data processing to be carried out.
EU Commission’s "FET Proactive" funding line
FET Proactive provides funding - thematically focused - for revolutionary, multidisciplinary technological research as a response to social and industrial challenges. The aim is to mature novel research themes in technology and to open up and develop the research landscapes necessary for this. The idea is to enable ambitious topics to be included when the relevant research communities are structured and set up - as well as when industrial research agendas are developed. FET Proactive is part of the EU’s "Horizon 2020" Framework Programme for Research and Innovation.