Wie künstliche Intelligenz zum Schutz von Orchideen beiträgt

    -     English
Gymnadenia conopsea: Die orchideenreichen und nahezu naturbelassenen Wiesen in d

Gymnadenia conopsea: Die orchideenreichen und nahezu naturbelassenen Wiesen in der Tschechischen Republik gehören zu den artenreichsten in Europa. Foto: Tiffany Knight

Orchideen erfreuen sich als Zimmerpflanzen großer Beliebtheit. In freier Natur sind viele Arten allerdings stark bedroht durch Landnutzung und illegale Ernte. Doch nur ein Bruchteil von ihnen steht auf der internationalen Roten Liste bedrohter Arten, denn die nötigen Fachgutachten sind enorm aufwendig. Ein neues und deutlich schnelleres automatisiertes Verfahren, entwickelt unter der Leitung von Biodiversitätsforschern aus Mitteldeutschland, zeigt, dass 30 Prozent aller Orchideenarten potenziell gefährdet sind. Im Fachmagazin Conservation Biology beschreiben die Forscher, wie ihr neuer Ansatz die naturschutzfachliche Prüfung für alle Arten weltweit beschleunigen könnte.


Gymnadenia conopsea: Die orchideenreichen und nahezu naturbelassenen Wiesen in der Tschechischen Republik gehören zu den artenreichsten in Europa. Foto: Tiffany Knight

Orchideen sind nicht nur dekorativ, sie spielen auch eine wirtschaftliche Rolle im Gartenbau, in der Pharmaund sogar in der Lebensmittelindustrie. So werden Vanille-Orchideen wegen ihrer Samenhülsen angebaut - sie bilden daher die wirtschaftliche Basis für den Nordosten Madagaskars. Doch viele der ungefähr 29.000 Orchideenarten sind durch Landnutzung oder illegale Ernte bedroht. Nur mit dem Wissen, welche Arten konkret bedroht sind, können diese auch geschützt werden. Die internationale Rote Liste der Weltnaturschutzorganisation IUCN ist meist das Mittel der Wahl, um einzuschätzen, wie bedroht eine Art ist. Die entsprechenden Fachgutachten folgen strengen Kriterien. Die besten verfügbaren wissenschaftlichen Informationen zusammenzubringen, ist enorm ressourcenaufwendig. Daher liegen nur für 1.400 aller Orchideenarten Rote-Listen-Gutachten vor.

Ein internationales Forscherteam unter Leitung des Deutschen Zentrums für integrative Biodiversitätsforschung (iDiv), der Martin-Luther-Universität Halle-Wittenberg und des Helmholtz-Zentrums für Umweltforschung (UFZ) ist diesem Problem mit einem automatisierten Verfahren unter Verwendung von maschinellem Lernen - auch bekannt als Deep Learning - begegnet. Die Einbindung von maschinellem Lernen kann das Verfahren zur Erstellung von Naturschutzgutachten auf eine neue Ebene heben. «Künstliche neuronale Netzwerke werden in anderen Bereichen schon angewendet, zum Beispiel bei der Bilderkennung“, sagt Alexander Zizka von iDiv und der Universität Leipzig. »Mit unserem Verfahren können wir aber noch zusätzliche Aspekte integrieren, zum Beispiel Klima, geographische Region oder artspezifische Merkmale. Und das alles in sehr kurzer Zeit.“

Fast 30 Prozent aller Orchideenarten sind potentiell gefährdet

?Idealerweise gäbe es für alle Orchideenarten Rote-Listen-Gutachten. Dann wüssten wir genau, welche am stärksten gefährdet sind, was der erste Schritt für ihren Erhalt ist“, sagt Pati Vitt von der Northwestern University in Evanston (USA). Vitt, eine Expertin im Bereich der Orchideenforschung, verbrachte 2018 ein Sabbatjahr bei iDiv und arbeitete währenddessen auch mit Experten im Bereich automatisierter Bewertungsverfahren zusammen. Mithilfe ihres vereinten Fachwissens konnten die Forscher das Aussterberisiko für fast 14.000 Orchideenarten untersuchen - die erste groß angelegte Untersuchung der Orchideenbestände weltweit.

Die Forscher fanden heraus, dass mehr als 4.300 der insgesamt 14.000 Arten potenziell vom Aussterben bedroht sind. Sie konnten außerdem aufzeigen, an welchen Orten Schutzmaßnahmen am dringendsten benötigt werden, nämlich in Madagaskar, Ostafrika, Südostasien und auf mehreren Inseln Ozeaniens. Das automatisierte Verfahren erreichte eine Genauigkeit von 84,3 Prozent.

Schnellere Naturschutzgutachten für alle Arten weltweit

Die Forscher untersuchten auch, in welchen Fällen die automatisierten Verfahren zu einer anderen Einschätzung kamen als die Fachgutachten für die internationale Rote Liste. «Dadurch wissen wir, wie wir die Verfahren in Zukunft weiterentwickeln müssen, damit sie noch genauer werden“, erklärt Tiffany Knight von iDiv, MLU und UFZ. »Im Falle der Orchideen müssten wir noch Informationen zu artspezifischen Merkmalen und zur lokalen Landnutzung mit einfließen lassen.“

Das automatisierte Verfahren, das die Forscher für die Orchideen entwickelt haben, könnte aber auch für andere Pflanzenfamilien zum Einsatz kommen. Insbesondere in den artenreichen, aber wenig untersuchten tropischen Gebieten könnte der neue Ansatz wertvoll sein. In diesen Regionen können selbst vorläufige Einschätzungen dazu beitragen, Naturschutzmaßnahmen entsprechend auszurichten. «Ein großer Vorteil unseres Ansatzes ist, dass wir ihn auch für andere taxonomische Gruppen oder Regionen trainieren können“, sagt Zizka. »Damit könnte er die die Naturschutzgutachten für alle Arten weltweit beschleunigen.“

Originalpublikation in "Conservtion Biology":

"Automated conservation assessment of the orchid family with deep learning" . DOI: 10.1111/cobi.13616

Kati Kietzmann


This site uses cookies and analysis tools to improve the usability of the site. More information. |