Gefäße des gesamten Gehirns dargestellt

    -     English
Ausschnitt aus dem Gefäßgeflecht im Gehirn einer Maus. Die Farben stehen für unt

Ausschnitt aus dem Gefäßgeflecht im Gehirn einer Maus. Die Farben stehen für unterschiedliche Durchmesser der Gefäße: Rot für die größten, blau für die kleinsten. Paetzold / TUM, Ertürk/LMU Klinikum

Mit biochemischen Methoden und KI auch feinste Kapillaren abgebildet

Erkrankungen des Gehirns gehen oft mit typischen Veränderungen der Blutgefäße einher. Münchner Wissenschaftlerinnen und Wissenschaftler haben jetzt ein Verfahren vorgestellt, mit dem sich die Strukturen und eventuelle krankhafte Veränderungen aller Gefäße - auch der feinsten Kapillaren - analysieren lassen. Sie haben mit diesem Verfahren, das auf einer Kombination von biochemischen Methoden und Künstlicher Intelligenz beruht, zunächst die gesamten Gefäße im Gehirn einer Maus dargestellt.



Veränderungen in den Blutgefäßen kennzeichnen etliche schwere Hirnerkrankungen - von der traumatischen Hirnverletzung bis zum Schlaganfall. Selbst bei Erkrankungen wie der Alzheimerschen Demenz sind die feinen Kapillaren verändert. Kurzum: Die Analyse der Blutgefäße ist wesentlich, um sowohl die normale als auch die krankhafte Gehirnfunktion zu verstehen. ,,Wir sind diesem Ziel jetzt deutlich näher gekommen", erklärt Ali Ertürk, Direktor des Instituts für Tissue Engineering und Regenerative Medizin am Helmholtz Zentrum München und Principal Investigator am Institut für Schlaganfallund Demenzforschung des LMU Klinikums.

Zunächst ist es Ertürks Team gelungen, mit hochauflösender Fluoreszenz-Mikroskopie, das Gefäßsystem der Gehirne von Mäusen abzubilden, ohne die Proben kleinteilig zerschneiden zu müssen. Dafür hat das Team die Technik des "Tissue Clearing" weiterentwickelt. Dabei werden biologische Gewebe mit speziellen Farbstoffen behandelt, die sie für die Fluoreszenz-Mikroskopie transparent machen. "Doch bisher war es mit dieser Technik nur möglich, entweder die großen oder die kleinen Gefäße des Gehirns darzustellen", sagt Mihail Ivilinov Todorov, Doktorand bei Ertürk. Deshalb haben die Münchner Wissenschaftler erstmals zwei Farbstoffe kombiniert. ,,So haben wir einige schöne Bilder der Gehirngefäße inklusive der Kapillaren bekommen", erklärt der Biologe weiter.

Mithilfe Künstlicher Intelligenz haben Forschende aus der Arbeitsgruppe von Björn Menze, Professor für Maschinelles Lernen in der Biomedizinischen Bildgebung an der Technischen Universität München (TUM), auf Grundlage dieser Bilder das gesamte Gefäßnetzwerk des Gehirns bis in seine feinsten Verästelungen rekonstruiert. Eine solche Rekonstruktion liefert nicht nur Bilder, sondern macht es insbesondere möglich, die Gefäßstrukturen quantitativ auszuwerten. ,,So können wir zum Beispiel für verschiedene Hirnareale statistisch erfassen, welche Durchmesser die Gefäße haben oder wie sie sich verzweigen", sagt Johannes Paetzold, Doktorand in Menzes Arbeitsgruppe.

,,Wir haben über die letzten Jahre einen Deep-Learning-Algorithmus entwickelt, der darauf spezialisiert ist, in medizinischen Bildern Gefäße zu erkennen", erklärt Menze. ,,Diesen haben wir hier erstmals auf ein gesamtes Gehirn angewandt." Dabei konnte der Algorithmus zuverlässig zwischen Gefäßen und umliegendem Gewebe unterscheiden, obwohl in dem Fluoreszenz-Bild nicht alle Bereiche gut ausgeleuchtet waren und Lichtreflexe oder andere Fehler die Darstellung verfälschten.

Mihail Ivilinov Todorov plant, die statistischen Daten für die Erforschung von Gefäßveränderungen bei Schlaganfällen zu nutzen. Björn Menze hingegen möchte die globalen Strukturen des Gefäßsystems untersuchen und zum Beispiel verstehen, welche Rolle anatomisch bedingte Unterschiede bei Hirnerkrankungen spielen.

Aber auch im klinischen Alltag könnte die Methode zum Einsatz kommen: ,,Die kleinen Gewebeproben aus menschlichen Tumoren lassen sich mit unserem System wahrscheinlich exakter untersuchen als bisher möglich", erklärt Ertürk. Krebsgewebe ist durchzogen von Gefäßen - und die Analyse ihrer Struktur hilft dabei, das Stadium eines Tumors zu bestimmen.

Mit hochauflösender Fluoreszenz-Mikroskopie erstelltes Bild des kompletten Gefäßsystems im Gehirn einer Maus. Die Gefäße wurden dafür mit einer neuen Methode eingefärbt, während das übrige Gewebe mithilfe von ,,Tissue Clearing" durchsichtig gemacht wurde. Dabei wurden zwei Farbstoffe verwendet, die die großen bzw. kleinen Gefäße (im Bild violett bzw. grün) sichtbar machen.

Mithilfe Künstlicher Intelligenz erstellte Rekonstruktion des kompletten Gefäßgeflechts im Gehirn einer Maus. Der verwendete Algorithmus macht es unter anderem möglich, die Durchmesser aller Blutgefäße zu bestimmen. Rot steht für die größten Durchmesser, blau für die kleinsten.

Machine learning analysis of whole mouse brain vasculature

Mihail Ivilinov Todorov, Johannes Christian Paetzold, Oliver Schoppe, Giles Tetteh, Suprosanna Shit, Velizar Efremov, Katalin Todorov-Völgyi, Marco Düring, Martin Dichgans, Marie Piraud, Bjoern Menze & Ali Ertürk

Nature Methods (2020). DOI: 10.1038/s41592-020-0792-1


Dr. Ali Ertürk
Institut für Schlaganfallund Demenzforschung (ISD)
LMU Klinikum München E-Mail: ali.ertuerk(at)med.uni-muenchen.de

Björn Menze
Technische Universität München (TUM)
Professur für Maschinelles Lernen in der Biomedizinischen Bildgebung
Munich School of BioEngineering und Zentralinstitut für Translationale Krebsforschung (TranslaTUM)

Tel: +49 89 289 10930
E-Mail: bjoern.menze(at)tum.de


This site uses cookies and analysis tools to improve the usability of the site. More information. |