Time travel through the evolution of terrestrial plants

Günter Theißen and Dr Lydia Gramzow of the Matthias Schleiden Institute. Image:
Günter Theißen and Dr Lydia Gramzow of the Matthias Schleiden Institute. Image: Anne Günther (University of Jena)
An international research consortium to which scientists from Jena contributed has presented data on how plant groups, their genes and genomes have developed in more than a billion years. Life Today, the results of a mammoth project have been published by more than 200 scientists from more than 130 research institutes all over the world. Over nine years, the scientists have used extensive computer technology to analyse all the active genes of more than 1,000 species of green algae, mosses, club mosses, ferns, gymnosperms, and flowering plants; organise genes and gene families into family trees; and unravel the relationships between plants. With the data presented, we are able to understand in unprecedented detail how and when plants became capable of defying gravity to grow to great heights or of producing seeds, flowers and fruits. The study has been published in the renowned journal 'Nature' and among the authors is a team from Friedrich Schiller University, Jena. In the study, Prof. Günter Theißen and Dr Lydia Gramzow of the Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany of the University of Jena investigated when specific genes responsible for flower development arose and were amplified in the course of evolution. These MADS-box genes, as they are known, occur in all plant families, though the frequency of their occurrence varies from one plant family to another.
account creation

TO READ THIS ARTICLE, CREATE YOUR ACCOUNT

And extend your reading, free of charge and with no commitment.



Your Benefits

  • Access to all content
  • Receive newsmails for news and jobs
  • Post ads

myScience