Surface, ocean and core of Saturn’s moon Enceladus. The illustration shows the ice shell, which is thinner at the polar regions, with the ocean underneath. The core of Enceladus is assumed to be porous and thus permeable to ocean water. The graphic is based on a new model used to produce a three-dimensional simulation of these processes under the influence of Saturn’s tidal forces. The orange "glowing" parts of the core represent the areas that reach temperatures of at least 90 degrees Celsius.
Heat from the friction of rocks caused by tidal forces could be the "engine" for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that the moon has a porous core that allows water from the overlying ocean to seep in, where the tidal friction exerted on the rocks heats it. This shows a computer simulation based on observations from the European-American Cassini-Huygens mission. It also offers among others an answer to the long-standing question of where the energy that can support water in liquid form on the small, cryovulcanic moon far from the sun comes from. The Heidelberg University research group led by planetary scientist Assistant Professor Dr Frank Postberg participated in the investigation. In 2015, the researchers had already shown that there must be hydrothermal activity on Saturn's moon. Icy volcanoes on Enceladus launch huge jets of gas and icy grains that contain fine particles of rock into space.
TO READ THIS ARTICLE, CREATE YOUR ACCOUNT
And extend your reading, free of charge and with no commitment.