Exploring the phenomenon of superconductivity

- EN - DE
In a known and well-understood scenario, pairing is caused solely by the attract
In a known and well-understood scenario, pairing is caused solely by the attraction between two fermions (green lines). However, Heidelberg scientists found that with strong interactions between the fermions, a different type of pairing takes place, which strongly depends on the density of the surrounding medium (gray shaded regions). This suggests that in this state, each particle is not only paired with one other particle, but that there are additional correlations with other particles in its surroundings.
Using ultracold atoms, researchers at Heidelberg University have found an exotic state of matter where the constituent particles pair up when limited to two dimensions. The findings from the field of quantum physics may hold important clues to intriguing phenomena of superconductivity. Superconductors are materials through which electricity can flow without any resistance once they are cooled below a certain critical temperature. The technologically most relevant class of materials, with exceptionally high critical temperatures for superconductivity, is poorly understood so far. There is evidence, however, that in order for superconductivity to occur, a certain type of particles - the fermions - must pair up. Moreover, research has shown that materials which become superconducting at relatively high temperatures have layered structures. "This means that electrons in these systems can only move in two-dimensional planes", explains Selim Jochim of Heidelberg University's Institute for Physics, who heads the project.
account creation

TO READ THIS ARTICLE, CREATE YOUR ACCOUNT

And extend your reading, free of charge and with no commitment.



Your Benefits

  • Access to all content
  • Receive newsmails for news and jobs
  • Post ads

myScience