Curiosity and pure maths

’Curiosity’ research at the Faculty of Biology and Psychology
’Curiosity’ research at the Faculty of Biology and Psychology
New funding and an extension: DFG funds two Research Training Groups at the University of Göttingen

The German Research Foundation (DFG) will be funding a new Research Training Group (RTG) at the University of Göttingen from next year. The RTG "Curiosity" is based at the Faculty of Biology and Psychology. Funding is expected to total around 7.8 million euros over the following five years. In addition, the DFG has extended the funding for the RTG "Fourier Analysis and Spectral Theory" at the Faculty of Mathematics and Computer Science by five years. The award for this RTG totals around 4.5 million euros over the extended funding period.

Curiosity is broadly defined as the desire to obtain more information about certain aspects of our environment. We live in a world where we have access to unprecedented amount of information about the world around us. We need better understanding of how we decide which aspects of our environment we want to explore further. The new RTG "Curiosity" will contribute to this understanding across 13 doctoral projects. Together, researchers will investigate why, when, and how we choose which sources of information to attend to and learn from.

"Our goal is to bring together doctoral researchers from different disciplines and support them in working towards a common theoretical language of curiosity and an integrative, interdisciplinary framework for this key component of our behaviour," explains RTG Spokesperson, Professor Nivedita Mani from the Georg Elias Müller Institute of Psychology. The RTG takes an interdisciplinary approach, bringing together researchers from diverse fields such as psychology and behavioural biology as well as systems and theoretical neuroscience to better understand the biological, neuropsychological and computational foundations of curiosity.

Fourier analysis and spectral theory have their roots in physics, where they are used to analyse optical and acoustic signals. The underlying mathematical theory has relevant connections with a wide variety of areas within mathematics. This even extends to number theory, where it forms the basis of the still unsolved Riemann conjecture on the distances between prime numbers. "Very different mathematical disciplines interact in our RTG," explains RTG Spokesperson Professor Thomas Schick from the Institute of Mathematics. Fourier analysis and spectral theory are used as methods to understand the structure of solutions to differential equations from mathematical physics and polynomial equations from number theory, for example.

"Our particular focus is on ensuring that everyone involved sees the issues from broader perspectives and dares to think outside the box," says Schick. "This led to unexpected findings in the first funding period, for example in high-dimensional geometry." The RTG expects similar progress in the second funding period.

Professor Nivedita Mani

University of Göttingen

Georg-Elias-Müller-Institute for Psychology

Heinrich-Düker-Weg 10, 37073 Göttingen

(0)551 39-23617

Professor Thomas Schick

University of Göttingen

Institute of Mathematics

Bunsenstraße 3, 37073 Göttingen

(0)551 39-27766