New synthesis approach for soluble silicon clusters

- EN - DE
In a simple, two-step reaction scientists at the laboratory of Fässler produce n
In a simple, two-step reaction scientists at the laboratory of Fässler produce nine-atom silicon clusters in soluble form. Image: U. Benz / TUM
Theoretical calculations indicate that under certain conditions silicon can endow solar cells with a much higher efficiency. Small silicon clusters may provide a source of accordingly modified silicon. However, to date these clusters have not been accessible in soluble form, a prerequisite for flexible processing. Researchers at the Technical University of Munich (TUM) have now discovered a simple synthesis approach. Today, the best silicon solar cells in the world have an efficiency of 24 percent. The theoretical limit is around 29 percent. "This is because silicon normally crystallizes in a diamond structure which provides only an indirect band gap," explains Thomas Fässler, Professor of Inorganic Chemistry with Focus on New Materials at the Technical University of Munich.
account creation

TO READ THIS ARTICLE, CREATE YOUR ACCOUNT

And extend your reading, free of charge and with no commitment.



Your Benefits

  • Access to all content
  • Receive newsmails for news and jobs
  • Post ads

myScience