Chemische Oberflächensynthese unter extrem reinen Bedingungen erlaubt die kontrollierte Synthese von N’heterozyklischen -Ballbot-Polymeren-

Die Beweglichkeit der ballbotartigen NHCs führt zu neuen Möglichkeiten, beispielsweise die selbstorganisierte Gruppierung zu hochgeordneten Domänen aus diesem Molekültyp bis hin zu kooperativem, schwarmartigen Verhalten der NHCs beim autarken Umbau bestimmter Metalloberflächen in eine andere hochgeordnete Struktur, ohne jegliche äußere Beeinflussung wie Licht oder Elektronen. Über die Selbstorganisation hinaus sind diese Ballbot-Polymere äußerst vielversprechend im Hinblick auf neue Anwendungen in den Bereichen Nanoelektronik, Oberflächenfunktionalisierung und Katalyse", betont Harald Fuchs, Seniorprofessor am Physikalischen Institut der Universität Münster und wissenschaftlicher Leiter des münsterschen Center for NanoTechnology (CeNTech).
NHCs können leicht an den Stickstoff-(N-)Gruppen des fünfzähligen heterozyklischen Molekülkörpers modifiziert werden. Damit gelingt es, sowohl die elektronische Wechselwirkung der Carbene mit den Atomen einer Metalloberfläche - beispielsweise Gold - zu beeinflussen, als auch die Orientierung der Carbene senkrecht oder parallel zu einer Oberfläche zu kontrollieren. Eine Besonderheit der verwendeten halogenierten NHCs, die am Organisch-Chemischen Institut der Universität Münster entwickelt wurden, ist ihre Fähigkeit zur spontanen Ad-Atom-Bildung auf Edelmetalloberflächen und die dadurch entstehende Mobilität. Diese ist eine Voraussetzung für das Zusammentreffen und die Reaktion mit anderen reaktiven Systemen auf der Oberfläche.
"Für den Erfolg der Experimente war die Balance zwischen chemischer Reaktivität der monomeren Struktureinheiten und ihrer Mobilität entscheidend", fasst Erstautor Jindong Ren, ehemals Postdoktorand in der Arbeitsgruppe von Harald Fuchs und inzwischen Gruppenleiter am National Center for Nanoscience and Technology (NCNST) in China, zusammen. Einerseits können sich die Monomere durch die Ballbot-Eigenschaft leicht auf der Oberfläche bewegen, anderseits muss die Kontaktzeit der Reaktionspartner ausreichend lang sein, um die Reaktion zu veranlassen. Dies gelingt vor allem durch die molekulare Struktur und die passende Einstellung der Temperatur während des Experiments.
Die Kontrolle der chemischen Reaktionen und der Nachweis der gewünschten Reaktionsprodukte im Bereich der Oberflächen-Präzisionschemie erfordert hochspezialisierte präparative und analytische Experimente, die es erlauben, molekulare Interaktionen auf Oberflächen und einzelne Reaktionsschritte auf submolekularer Skala zu beobachten. Dafür setzten die Forscher am CeNTech sowie am Beijing National Center for Condensed Matter Physics und am Institute of Physics Methoden der Rastersondenmikroskopie (STM und nc-AFM) sowie Photoelektronenspektroskopie ein, um die chemischen Bindungsverhältnisse aufzuklären und den Nachweis der Ballbot-Strukturen zu führen. Komplementär hierzu ergänzten sie die experimentellen Ergebnisse durch aufwändige Computersimulationen am Institut für Festkörpertheorie der Universität Münster, basierend auf quantenmechanischen Ansätzen und reaktiven Kraftfeldern. Damit bestätigten sie die experimentellen Ergebnisse und quantifizierten die elektronischen und strukturellen Eigenschaften der Ballbot-Polymere.

Zum Hintergrund: Die Präzisionschemie an Oberflächen hat sich inzwischen zu einem eigenständigen Gebiet der Chemie entwickelt. Anders als in der klassischen Chemie im Reagenzglas oder in der Gasphase sind auf diesem Gebiet Ultrahochvakuumbedingungen und oft tiefe Temperaturen von bis auf minus 268 Grad Celsius erforderlich, um unbeabsichtigte Verunreinigungen zu vermeiden und um durch die niedrigen Temperaturen chemische (intermediäre) Zwischenschritte auf molekularer Ebene beobachten zu können. Feste, meist kristalline Oberflächen dienen als Plattform (Substrat) für die Reaktion und können auch die Reaktion katalytisch unterstützen. Nanostrukturierte Oberflächen wie die, die in dieser Arbeit eingesetzt wurden, ermöglichen die Kontrolle der Ausrichtung und eine selektive geometrische Anordnung der Reaktionsprodukte beziehungsweise der entstehenden Polymere.
Die Deutsche Forschungsgemeinschaft unterstützte die Arbeiten finanziell (SFB 858, SFB 1459, FU 299/18-1, MO 2345/4-1, 519972808). Weitere Unterstützung für Mitglieder des Forschungsteams kam von der Nationalen Stiftung für Naturwissenschaften in China (U2032206, 61888102), dem "Strategic Priority Research Program" der Chinesischen Akademie der Wissenschaften (XDB36000000) und dem Nationalen Schwerpunktprogramm für Forschung und Entwicklung in China (2019YFA0308500, 2018YFA0305800).
Originalveröffentlichung:
Jindong Ren, Maximilian Koy, Helena Osthues, Bertram Schulze Lammers, Christian Gutheil, Marvin Nyenhuis, Qi Zheng, Yao Xiao, Li Huang, Arne Nalop, Qing Dai, Hong-Jun Gao, Harry Mönig , Nikos L. Doltsinis, Harald Fuchs, Frank Glorius (2023): On-surface synthesis of ballbot-type N’heterocyclic carbene polymers. Nature Chemistry; DOI: 10.1038/s41557’023 -01310-1