Mechanische Kräfte im Nervensystem spielen Rolle bei Korrektur

Forschungsteam der Universität Münster zeigt bei der Taufliege: Abreißen kappt Überflüssige Nervenverbindungen

Durch genaue Analysen der Dendritenlängen (blaue/rote Pfeile) und Verästelungswi
Durch genaue Analysen der Dendritenlängen (blaue/rote Pfeile) und Verästelungswinkel (gelb) wies das Team Kräfte nach, die während des Prunings auf die Dendriten wirken; A) vor und B) nach der Abtrennung der Dendriten durch Pruning, siehe Vollbild. © WWU - Rumpf Lab
Nervenzellen kommunizieren miteinander über lange Fortsätze, die Axone und Dendriten beziehungsweise allgemein Neuriten genannt werden. Während der Entwicklung wachsen diese Fortsätze zunächst und bilden Verbindungen mit anderen Zellen, zum Beispiel Synapsen mit anderen Nervenzellen. Neuriten, die nicht richtig verknüpft sind oder nicht mehr gebraucht werden, werden durch den Korrekturmechanismus "Pruning" (engl. für Zurechtstutzen) wieder abgebaut. Beim Pruning werden zum Teil auch lange Neuriten direkt von der Nervenzelle abgetrennt. Wie dieses Abtrennen funktionieren kann, hat ein Forschungsteam um Dr. Sebastian Rumpf vom Institut für Neuround Verhaltensbiologie der Westfälischen Wilhelms-Universität (WWU) Münster jetzt herausgefunden. Das Team zeigte erstmals: In dem untersuchten Modellsystem, den sensorischen Nerven der Taufliege Drosophila melanogaster, geschieht das Pruning durch mechanisches Abreißen. Die Ergebnisse der Studie sind in der Fachzeitschrift "Journal of Cell Biology" veröffentlicht.

Während der Puppenphase, bei dem das Insekt eine Metamorphose durchläuft, werden viele Neuriten durch Pruning entfernt. "Dabei werden die Neuriten zunächst sehr instabil, was auf einen intrinsischen Mechanismus zurückzuführen ist", beschreibt Sebastian Rumpf. In der Hauptphase des Prunings bewegt sich das Tier sehr viel, da sich in dieser Zeit seine Körperform verändert. "Wir haben nun herausgefunden, dass diese Bewegungen die fragilen Neuriten so stark belasten, dass sie abreißen", beschreibt Sebastian Rumpf weiter. Die abgerissenen Neuriten werden dann als "Abfall" erkannt und vom umliegenden Gewebe entfernt.

Tierische Zellen erfahren konstant mechanische Reize, auf die sie zum Beispiel durch Formänderungen reagieren können. Über die Rolle von mechanischen Kräften im Nervensystem ist jedoch erstaunlich wenig bekannt. Unsere Arbeit zeigt nun, wie sich mechanisches Ziehen auf Nervenzellen auswirken kann", betonen die Erstautoren Dr. Rafael Krämer und Neele Wolterhoff. Der Mechanismus des Prunings war vorher unklar. Die Rolle von mechanischen Einflüssen war zuvor nicht untersucht worden. Experten vermuteten stattdessen, dass es in den Neuriten selbst einen "Abschneidemechanismus" geben müsse. Effekte, die durch potenzielle "Abschneide"-Enzyme hervorgerufen wurden, konnten aber immer anders besser erklärt werden, sodass die Frage letztlich offenblieb.

Mechanische Kräfte in Drosophila-Puppen nachzuweisen, ist schwierig, da die Tiere sich nur in ihrer Puppenhülle ungestört entwickeln und zu Kräftemessungen nicht direkt berührt werden können. Um dieses Hindernis zu umgehen, haben die Forscher den Pruning-Prozess mithilfe von "Live Imaging" und Fluoreszenzmikroskopie verfolgt - im Wesentlichen haben sie viele lange Videos von Nervenzellen aufgenommen. Sie wiesen Zugkräfte nach, indem sie in Videoaufnahmen beispielsweise sahen, dass die Neuriten unter Zug zunächst länger wurden, bevor sie abrissen. Durch genetische Veränderungen erreichten sie außerdem, dass sich die Tiere während der Entwicklung weniger bewegten. Das führte dann zu Defekten beim Pruning.

Der Exzellenzcluster "Cells in Motion" (Laufzeit 11/2012 bis 10/2019) und der Sonderforschungsbereich SFB 1348 der Deutschen Forschungsgemeinschaft unterstützen die Arbeit finanziell.

Originalveröffentlichung

Rafael Krämer, Neele Wolterhoff, Milos Galic, and Sebastian Rumpf (2023): Developmental Pruning of Sensory Neurites by Mechanical Tearing in Drosophila. Journal of Cell Biology; DOI: 10.1083/jcb.202205004