Ganz nah dran an den ,,Geisterteilchen"

    -     English
Arbeiten an den Germanium-Detektoren im Reinraum des unterirdischen Labors von G

Arbeiten an den Germanium-Detektoren im Reinraum des unterirdischen Labors von Gran Sasso. J. Suvorov / GERDA

Um die Vermutung zu belegen, dass Materie ohne Antimaterie erzeugt werden kann, sucht das GERDA-Experiment im Gran Sasso Untergrundlabor nach dem neutrinolosen doppelten Betazerfall. Es hat die weltweit höchste Empfindlichkeit für den Nachweis des gesuchten Zerfalls. Um die Chance einer Entdeckung weiter zu erhöhen, arbeitet das Folgeprojekt LEGEND an einem noch weiter verfeinerten Zerfallsexperiment.

Das Standardmodell der Teilchenphysik ist seit seinen Anfängen nahezu unverändert gültig. Widersprüche zwischen Theorie und Experiment haben sich bislang nur bei Neutrinos gezeigt.

Die Neutrino-Oszillation war dabei die erste Beobachtung, die nicht mit den Vorhersagen übereinstimmte. Sie beweist, dass Neutrinos im Widerspruch zum Standardmodell eine Masse ungleich Null haben. 2015 wurde diese Entdeckung mit dem Nobelpreis ausgezeichnet.

Hinzu kommt die Vermutung, dass Neutrinos so genannte Majorana-Teilchen sind: Anders als alle anderen Bausteine der Materie könnten sie ihre eigenen Antiteilchen sein. Dies würde auch eine Erklärung dafür liefern, warum es im Universum so viel mehr Materie als Antimaterie gibt.

Zur Überprüfung der Majorana-Vermutung sucht das GERDA-Experiment nach dem bisher nicht beobachteten neutrinolosen doppelten Betazerfall im Germanium-Isotop 76Ge: Dabei wandeln sich zwei Neutronen in einem 76Ge-Kern gleichzeitig in zwei Protonen um, wobei zwei Elektronen emittiert werden. Dieser Zerfall ist im Standardmodell verboten, da die beiden Antineutrinos - die ausgleichende Antimaterie - fehlen.

Die Technische Universität München (TUM) beteiligt sich seit vielen Jahren intensiv am Projekt GERDA (GERmanium Detector Array). Sprecher des neuen Projekts LEGEND ist Prof. Stefan Schönert, der die TUM-Forschungsgruppe leitet.

GERDA ist das erste Experiment auf dem Gebiet, das den störenden Untergrund soweit reduzieren konnte, dass der gesuchte neutrinolose doppelte Betazerfall, sofern er existiert, eine Halbwertszeit von mindestens 1026 Jahren haben muss, das ist das 10 000 000 000 000 000-fache des Alters des Universums.

Die Physiker wissen, dass Neutrinos mindestens hunderttausendmal mal leichter sind als Elektronen, die nächstschwereren Teilchen. Welche Masse sie genau haben, ist allerdings noch unbekannt und ein weiteres wichtiges Forschungsthema.

Interessanterweise korrespondiert die Halbwertszeit des neutrinolosen doppelten Betazerfalls mit einer speziellen Variante der Neutrino-Masse, der Majorana-Masse. Kombiniert man das neue GERDA-Ergebnis mit denjenigen anderer Doppel-Beta-Zerfallsexperimente, so muss diese Masse sogar mindestens eine Million mal kleiner sein als die des Elektrons. Physikalisch ausgedrückt läge die Masse bei unter 0,07 bis 0,16 eV/c2 [1].

Auch andere Experimente grenzen die Neutrino-Massen ein: Die jüngste Analyse der Planck-Mission kommt für die Summe der Massen der drei Neutrino-Arten auf unter 0,12 - 0,66 eV/c2.

Das Tritium-Zerfallsexperiment KATRIN am Karlsruher Institut für Technologie (KIT) wird in den kommenden Jahren die Masse des Elektron-Neutrinos mit einer Empfindlichkeit von ca. 0,2 eV/c2 bestimmen. Die Werte können zwar nicht direkt verglichen werden, sie erlauben es aber, die unterschiedlichen Modelle zu überprüfen. Bislang gibt es keine Widersprüche.

Die nun vorgestellten Beobachtungen wurden mit einer Detektormasse von 35,6 kg 76Ge gemacht. Eine neue internationale Zusammenarbeit unter dem Namen LEGEND wird nun die Detektormasse bis 2021 auf 200 kg 76Ge erhöhen und die Störungen so weit reduzieren, dass nach fünf Jahren eine Empfindlichkeit von 1027 Jahren erreicht ist.

The GERDA collaboration: Probing Majorana neutrinos with double beta decay
Science, published online on Thursday 5 September, 2019 - DOI: 10.1126/science/ aav8613


GERDA ist eine internationale europäische Kooperation von mehr als 100 Physikern aus Belgien, Deutschland, Italien, Russland, Polen und der Schweiz. In Deutschland sind die Technischen Universitäten München und Dresden, die Universität Tübingen und die Max-Planck Institute für Physik und für Kernphysik beteiligt. Die finanzielle Unterstützung in Deutschland kommt vom Bundesministerium für Bildung und Forschung (BMBF), von der Deutschen Forschungsgemeinschaft (DFG) über den Exzellenzcluster Universe und den SFB1258 sowie von der Max-Planck-Gesellschaft.

Prof. Schönert erhielt für vorbereitende Arbeiten zum Projekt LEGEND im Jahr 2018 einen ERC Advanced Grant. Für ihre Arbeiten am KATRIN-Experiment erhielt vor wenigen Tagen auch Frau Prof. Susanne Mertens einen ERC-Grant. Sie wird im Rahmen des Experiments nach sogenannten sterilen Neutrinos suchen.

[1] Massen werden in der Teilchenphysik statt in Kilogramm entsprechend der Einsteinschen Gleichung E=m*c2 in Elektronenvolt [eV] (als Einheit für die Energie)/Lichtgeschwindigkeit zum Quadrat angegeben, da der Zahlenwert sonst unvorstellbar klein würde: 1 eV/c2 entspricht 1,8 x 10-37 Kilogramm.

Bilder in druckfähiger Auflösung

Stefan Schönert
Technische Universität München
Experimentelle Astroteilchenphysik (E15)
Tel.: +49 89 289 12511
E-Mail: schoenert (at)ph.tum.de

  • lesezeit : 9 MIN


  • Der Europäische Forschungsrat (ERC) hat entschieden: Sieben der hochdotierten ERC Starting Grants gehen dieses Jahr an Wissenschaftlerinnen und Wissenschaftler der Technischen Universität München (TUM). Die Bandbreite der...

    Abermals startet die Technische Universität München (TUM) erfolgreich in die hochwettbewerbliche Exzellenzinitiative des Bundes und der Länder. Vier Forschungscluster der TUM und ihrer Kooperationspartner werden in den...

    Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Ein Team um die Physikerin Prof. Elisa Resconi von der Technischen Universität München (TUM) liefert ein wichtiges Indiz in...

    Warum verschwand die Antimaterie fast vollständig aus unserem Universum, die Materie aber nicht? Am Teilchenbeschleuniger der Großforschungseinrichtung CERN versuchen Wissenschaftlerinnen und Wissenschaftler dieses...

    Zum ersten Mal in der Geschichte der Sonnenforschung ist es Wissenschaftlern gelungen, die Sonnenenergie im Moment ihrer Produktion im Sonneninneren zu messen. Physiker der Borexino-Kollaboration beobachteten im...

    Nach fast zweijähriger Messzeit konnten Wissenschaftler der GERDA-Kollaboration im Gran-Sassso Untergrundlabor zeigen, dass Neutrinos wesentlich leichter sein müssen als bisher vermutet. Sie konnten damit eine frühere...


    Diese Website verwendet Cookies und Analysetools, um die Benutzerfreundlichkeit der Website zu verbessern. Weitere informationen. |